首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11171篇
  免费   276篇
  国内免费   95篇
化学   7674篇
晶体学   223篇
力学   241篇
综合类   1篇
数学   2010篇
物理学   1393篇
  2021年   91篇
  2020年   122篇
  2019年   118篇
  2018年   92篇
  2017年   94篇
  2016年   226篇
  2015年   189篇
  2014年   201篇
  2013年   565篇
  2012年   532篇
  2011年   608篇
  2010年   316篇
  2009年   276篇
  2008年   579篇
  2007年   610篇
  2006年   584篇
  2005年   554篇
  2004年   487篇
  2003年   389篇
  2002年   415篇
  2001年   96篇
  2000年   87篇
  1999年   83篇
  1998年   81篇
  1997年   130篇
  1996年   168篇
  1995年   110篇
  1994年   113篇
  1993年   123篇
  1992年   115篇
  1991年   99篇
  1990年   122篇
  1989年   111篇
  1988年   110篇
  1987年   88篇
  1986年   96篇
  1985年   179篇
  1984年   193篇
  1983年   136篇
  1982年   224篇
  1981年   190篇
  1980年   167篇
  1979年   154篇
  1978年   148篇
  1977年   134篇
  1976年   143篇
  1975年   126篇
  1974年   148篇
  1973年   127篇
  1972年   79篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Using Reaction Mechanism Generator (RMG), we have automatically constructed a detailed mechanism for acetylene pyrolysis, which predicts formation of polycyclic aromatic hydrocarbons (PAHs) up to pyrene. To improve the data available for formation pathways from naphthalene to pyrene, new high‐pressure limit reaction rate coefficients and species thermochemistry were calculated using a combination of electronic structure data from the literature and new quantum calculations. Pressure‐dependent kinetics for the CH potential energy surface calculated by Zádor et al. were incorporated to ensure accurate pathways for acetylene initiation reactions. After adding these new data into the RMG database, a pressure‐dependent mechanism was generated in a single RMG simulation which captures chemistry from C to C. In general, the RMG‐generated model accurately predicts major species profiles in comparison to plug‐flow reactor data from the literature. The primary shortcoming of the model is that formation of anthracene, phenanthrene, and pyrene are underpredicted, and PAHs beyond pyrene are not captured. Reaction path analysis was performed for the RMG model to identify key pathways. Notable conclusions include the importance of accounting for the acetone impurity in acetylene in accurately predicting formation of odd‐carbon species, the remarkably low contribution of acetylene dimerization to vinylacetylene or diacetylene, and the dominance of the hydrogen abstraction CH addition (HACA) mechanism in the formation pathways to all PAH species in the model. This work demonstrates the improved ability of RMG to model PAH formation, while highlighting the need for more kinetics data for elementary reaction pathways to larger PAHs.  相似文献   
12.
13.
14.
Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol‐ene “ click ” photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman‐IR , and small angle X‐ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1548–1557  相似文献   
15.
Tetrahedron DNA structures were formed by the assembly of three-way junction ( TWJ ) oligonucleotides containing O6-2′-deoxyguanosine-alkylene-O6-2′-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2′-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6-alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.  相似文献   
16.
17.
A new unsymmetrical five-coordinate Schiff base ligand (HL) with an N4O donor set ( 2 ) has been prepared by condensation of N1-(2-morpholinoethyl)-N1-([pyridine-2-yl]methyl)propane-1,3-diamine with 2-hydroxy-benzaldehyde. Metal complexes [ML]n+ (M = Zn2+, Cd2+, Mn2+, Cu2+, Ni2+, Ag+, Fe3+, and Co2+ ( 3–10 ) were synthesized by the reaction of the ligand and metal salts in ethanol. The resulting products were characterized by elemental analyses, infrared, 1H and 13C nuclear magnetic resonance spectra (in the case of Cd and Zn complexes), UV–Vis, electrospray ionization-mass spectrometric, and conductivity measurements. The structure of the complexes [ZnL](ClO4) ( 3 ), [CdL](ClO4) ( 4 ), and [CuL](ClO4) ( 7 ) has been determined by single-crystal X-ray diffraction analysis. The metal complexes were determined to have a distorted trigonal bipyramidal (Zn and Cd) or a distorted square pyramidal (Cu) geometry. The cytotoxic potential of each compound (1–10) against MCF-7 and MDA-MB-231 (breast cancer cells), PC-3 (prostate cancer cells), and WI-38 human normal lung fibroblast cells was evaluated using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Compounds 1, 2, and 10 did not display any activity toward any cell line tested. None of the compounds except compound 8 was cytotoxic toward PC-3. Compounds 4 and 8 showed the highest cytotoxic activity against the MCF-7 and MDA-MB-231 cell lines. Because compounds 3, 6, and 9 have similar half-maximal inhibitory concentration values against cancer cells and normal cells, these compounds displayed poor selectivity between cancer and normal cells. More importantly, it was observed that compound 5 acts differently toward different types of cell lines. For example, it displays lower cytotoxicity against the WI-38 normal cell line than it does against the MDA-MB-231 cell line.  相似文献   
18.
Journal of Solution Chemistry - A polemic is given regarding the apparent molal volumes reported in the recent paper by Mohammadi and coworkers. The authors’ calculated apparent molal volumes...  相似文献   
19.
Cyclic polymers have drawn considerable interest for their peculiar physical properties in comparison to linear polymers, despite their equivalent compositions. Synthetically, cyclic polymers can be accessed through either macrocyclic ring‐closure or by ring‐expansion polymerization, but the main challenge with either method is the production of highly pure cyclic polymer samples. This highlight describes advances in the area of cyclic polymer synthesis, with a particular focus on ring‐expansion metathesis polymerization. Methods for characterizing cyclic polymers and assessing their purity are also discussed in order to emphasize the need for additional robust and reliable methods for synthesizing and studying topologically complex macromolecules. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 228–242  相似文献   
20.
The synthesis and X-ray structure of a new manganese(V) mesitylimido complex with a tetraamido macrocyclic ligand (TAML), [MnV(TAML)(N-Mes)] ( 1 ), are reported. Compound 1 is oxidized by [(p-BrC6H4)3N ]+.[SbCl6] and the resulting MnVI species readily undergoes H-atom transfer and nitrene transfer reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号